Catalytic Thr or Ser Residue Modulates Structural Switches in 2-Cys Peroxiredoxin by Distinct Mechanisms

نویسندگان

  • Carlos A. Tairum
  • Melina Cardoso Santos
  • Carlos A. Breyer
  • R. Ryan Geyer
  • Cecilia J. Nieves
  • Stephanie Portillo-Ledesma
  • Gerardo Ferrer-Sueta
  • José Carlos Toledo
  • Marcos H. Toyama
  • Ohara Augusto
  • Luis E. S. Netto
  • Marcos A. de Oliveira
چکیده

Typical 2-Cys Peroxiredoxins (2-Cys Prxs) reduce hydroperoxides with extraordinary rates due to an active site composed of a catalytic triad, containing a peroxidatic cysteine (CP), an Arg, and a Thr (or Ser). 2-Cys Prx are involved in processes such as cancer; neurodegeneration and host-pathogen interactions. During catalysis, 2-Cys Prxs switch between decamers and dimers. Analysis of 2-Cys Prx structures in the fully folded (but not locally unfolded) form revealed a highly conserved, non-conventional hydrogen bond (CH-π) between the catalytic triad Thr of a dimer with an aromatic residue of an adjacent dimer. In contrast, structures of 2-Cys Prxs with a Ser in place of the Thr do not display this CH-π bond. Chromatographic and structural data indicate that the Thr (but not Ser) destabilizes the decamer structure in the oxidized state probably through steric hindrance. As a general trend, mutations in a yeast 2-Cys Prx (Tsa1) favoring the dimeric state also displayed a decreased catalytic activity. Remarkably, yeast naturally contains Thr-Ser variants (Tsa1 and Tsa2, respectively) with distinct oligomeric stabilities in their disulfide states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for protein trans-splicing by a bacterial intein-like domain--protein ligation without nucleophilic side chains.

UNLABELLED Protein splicing in trans by split inteins has become a useful tool for protein engineering in vivo and in vitro. Inteins require Cys, Ser or Thr at the first residue of the C-terminal flanking sequence because a thiol or hydroxyl group in the side chains is a nucleophile indispensable for the trans-esterification step during protein splicing. Newly-identified distinct sequences with...

متن کامل

Study of the structure-activity relationships for the pyrazinamidase (PncA) from Mycobacterium tuberculosis.

In an attempt to investigate the molecular basis of pyrazinamide hydrolysis by the PncA protein from Mycobacterium tuberculosis, we determined the pyrazinamidase activity of nine PncA mutants bearing a single amino acid substitution. Among them, three mutants (D8G, K96T and S104R) had virtually no activity (< or =0.004 unit/mg), five (F13S, T61P, P69L, Y103S and A146V) retained a low level of a...

متن کامل

Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes.

Cofactor-independent phosphoglycerate mutase (iPGM) has been previously identified as a member of the alkaline phosphatase (AlkP) superfamily of enzymes, based on the conservation of the predicted metal-binding residues. Structural alignment of iPGM with AlkP and cerebroside sulfatase confirmed that all these enzymes have a common core structure and revealed similarly located conserved Ser (in ...

متن کامل

Enhancement of the Chaperone Activity of Alkyl Hydroperoxide Reductase C from Pseudomonas aeruginosa PAO1 Resulting from a Point-Specific Mutation Confers Heat Tolerance in Escherichia coli

Alkyl hydroperoxide reductase subunit C from Pseudomonas aeruginosa PAO1 (PaAhpC) is a member of the 2-Cys peroxiredoxin family. Here, we examined the peroxidase and molecular chaperone functions of PaAhpC using a site-directed mutagenesis approach by substitution of Ser and Thr residues with Cys at positions 78 and 105 located between two catalytic cysteines. Substitution of Ser with Cys at po...

متن کامل

Conversion of trypsin to a functional threonine protease.

The hydroxyl group of a serine residue at position 195 acts as a nucleophile in the catalytic mechanism of the serine proteases. However, the chemically similar residue, threonine, is rarely used in similar functional context. Our structural modeling suggests that the Ser 195 --> Thr trypsin variant is inactive due to negative steric interaction between the methyl group on the beta-carbon of Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016